Shaper-assisted collinear SPIDER: fast and simple broadband pulse compression in nonlinear microscopy

نویسندگان

  • Bernhard von Vacano
  • Marcus Motzkus
چکیده

In situ characterization and control of the phase of broadband femtosecond pulses in microscopy can be achieved with a novel simplified scheme based on spectral shear interferometry for direct electric field reconstruction (SPIDER): the use of a femtosecond pulse shaper eliminates the need for an interferometer setup, allows dispersion-free SPIDER operation and at the same time compression even of complex pulses. Beyond compression, the scheme allows precise phase control at the site of the microscopic experiment. We present the underlying principles, design considerations, and details of the experimental implementation, and show the successful operation of the shaper-assisted collinear (SAC) SPIDER to characterize, compress, and tailor broadband femtosecond pulses in situ. The reliability is demonstrated by comparison with independent crossfrequency-resolved optical gating measurement, and improved multiphoton imaging with SAC-SPIDERcompressed pulses is shown. Its simplicity and versatility make SAC-SPIDER an extremely useful tool for next-generation broadband nonlinear microscopy. © 2007 Optical Society of America OCIS codes: 320.5520, 180.0180, 320.5540, 170.6900.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Single-beam homodyne SPIDER for multiphoton microscopy.

We report a new version of spectral phase interferometry for direct electric field reconstruction (SPIDER) requiring only a single phase-shaped laser beam. A narrowband probe pulse is selected out of a broadband ultrafast laser pulse by a phase pulse-shaping technique and mixed with the original broadband pulse to generate a second-harmonic generation (SHG) signal. Using another SHG signal sole...

متن کامل

Cross-validation of theoretically quantified fiber continuum generation and absolute pulse measurement by MIIPS for a broadband coherently controlled optical source.

The predicted spectral phase of a fiber continuum pulsed source rigorously quantified by the scalar generalized nonlinear Schrödinger equation is found to be in excellent agreement with that measured by multiphoton intra-pulse interference phase scan (MIIPS) with background subtraction. This cross-validation confirms the absolute pulse measurement by MIIPS and the transform-limited compression ...

متن کامل

Characterization of a broadband pulse for phase controlled multiphoton microscopy by single beam SPIDER.

We present what we believe to be a new version of spectral phase interferometry for direct electric field reconstruction (SPIDER) using only a single-phase and polarization controlled laser beam. Two narrow pulses and one broadband pulse are selected out of an ultrafast laser pulse by a polarization and phase control technique to generate second harmonic generation (SHG) signals, which are equi...

متن کامل

Generation of ultra-broadband pulses in the near-IR by non-collinear optical parametric amplification in potassium titanyl phosphate.

Non-collinear optical parametric amplification in potassium-titanyl phosphate (KTP) pumped with 800 nm pulses is reported. Broadband phase matching is achieved with non-collinear geometry and a slightly divergent signal seed. This enables a gain bandwidth up to approximately 2500 cm(-1) in near-IR region. Introducing a chirp into the pump pulse makes it possible to amplify the white light seed ...

متن کامل

75 MW few-cycle mid-infrared pulses from a collinear apodized APPLN-based OPCPA.

We present an ultra-broadband optical parametric chirped-pulse amplification (OPCPA) system operating at 3.4 µm center wavelength with a peak power of 75 MW. The OPCPA system is split into a pre- and a power-amplifier stage. Both stages are based on apodized aperiodically poled MgO:LiNbO3 (APPLN). The collinear mixing configuration allows us to manipulate the spectral phase of the output mid-in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007